Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
Authors
Abstract:
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and the network outputs were rotor fault state, and the number of conductive bars with broken fault. Moreover, particle-swarm optimization algorithm was used to determine the optimal network weights and neuron penetration radius in the neural network. The results obtained from the proposed method showed the optimal and efficient performance of the method in detecting conductive bars broken fault in induction motor in low load conditions.
similar resources
Stator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network
Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...
full textOptimal gain tuning of PI speed controller in induction motor drives using particle swarm optimization
This article presents particle swarm optimization (PSO)-based optimal gain tuning of proportional integral (PI) speed controller in an induction motor (IM) drive (30 hp) with mine hoist load diagram. Optimization considers the load and speed variations, and provides appropriate gains to the speed controller to obtain good dynamic performance of the motor. IM performance is checked with the opti...
full textPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
full textTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
full textOptimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling
Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...
full textLoad Flow Analysis Using Particle Swarm Optimization Trained Neural Network
A new method of load flow analysis of a power system using Particle Swarm Optimization (PSO) trained neural network is proposed in this paper. Load Flow Analysis is the first and foremost step in power system analysis. It is necessary to solve load flow problem for Power System Planning, Contingency analysis, and Stability analysis. The results obtained from the load flow analysis are Voltage m...
full textMy Resources
Journal title
volume 31 issue 11
pages 1876- 1882
publication date 2018-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023